#include "scheduler.h" void _initialize_stack_frame(void *, void *, int, char**); enum states {READY = 0, BLOCKED}; typedef struct processCDT { struct processCDT * next; char * name; int pid; int ppid; uint64_t rsp; uint64_t rbp; char priority; char executions; char foreground; enum states state; } processCDT; processCDT * firstReady = NULL; processCDT * lastReady = NULL; processCDT * firstBlocked = NULL; processCDT * lastBlocked = NULL; int readyLen = 0; int blockedLen = 0; processCDT * currentProcess = NULL; int pids = 0; uint64_t nextProcess() { if (currentProcess == NULL) return firstReady->rsp; if (currentProcess->executions < MAX_PRIORITY - currentProcess->priority + 1) { currentProcess->executions++; return currentProcess->rsp; } currentProcess->executions = 0; currentProcess = currentProcess->next; return currentProcess->rsp; } void idle() { while (1) { haltcpu(); } } void initScheduler() { char * argv[] = {"Dummy"}; enqueueProcess(idle, 0, 1, argv); } void enqueueProcess(void (*fn) (int, char **), char foreground, int argc, char *argv[]) { processADT proc = pvPortMalloc(sizeof(processCDT)); uint64_t * rbp = pvPortMalloc(STACK_SIZE); uint64_t * rsp = rbp; char priority = (foreground == 1) ? DEF_PRIORITY : MAX_PRIORITY/2; newProcess(proc, argv[0], priority, foreground, (uint64_t)rsp, (uint64_t)rbp); _initialize_stack_frame(fn, rbp, argc, argv); if (firstReady == NULL) firstReady = proc; else lastReady->next = proc; return; } void newProcess(processADT process, char * name, char priority, char foreground, uint64_t rsp, uint64_t rbp) { char aux[MAX_NAME_SIZE]; for (int j = 0; j < MAX_NAME_SIZE && name[j] != 0; j++) { aux[j] = name[j]; } process->name = aux; process->pid = pids++; process->ppid = currentProcess->pid; process->priority = priority; process->rsp = rsp; process->rbp = rbp; process->executions = 0; process->foreground = foreground; process->state = READY; } // void loader(int argc, char * argv[], void (*fn) (int, char **)) { // fn(argc, argv); // exit(); // } processCDT * search(processCDT ** previous, int pid, processCDT * first) { processCDT * curr = first; * previous = NULL; while (curr != NULL) { if (curr->pid == pid) { break; } * previous = curr; curr = curr->next; } if (curr == NULL) { * previous = NULL; return NULL; } if (curr == first) { * previous = NULL; return curr; } return curr; } char block(int pid) { processCDT * prev = NULL; processCDT * del = search(&prev, pid, firstReady); if (del == NULL) return EXIT_FAILURE; else { if (prev != NULL) prev->next = del->next; else firstReady = del->next; } lastBlocked->next = del; del->next = NULL; lastBlocked = del; forceTimer(); return EXIT_SUCCESS; } char unblock(int pid) { processCDT * prev = NULL; processCDT * del = search(&prev, pid, firstBlocked); if (del == NULL) return EXIT_FAILURE; else { if (prev != NULL) prev->next = del->next; else firstBlocked = del->next; } if (pid == del->pid) forceTimer(); return EXIT_SUCCESS; } char kill(int pid) { processCDT * prev = NULL; processCDT * del = search(&prev, pid, firstReady); if (del == NULL) { del = search(&prev, pid, firstBlocked); if (del == NULL) return EXIT_FAILURE; else { if (prev != NULL) prev->next = del->next; else firstBlocked = del->next; } } else { if (prev != NULL) prev->next = del->next; else firstReady = del->next; } if (pid == del->pid) forceTimer(); vPortFree((void *) del->rsp); vPortFree((void *) del); return EXIT_SUCCESS; } void exitProcess() { kill(currentProcess->pid); } char nice(char offset) { if (currentProcess == NULL) return EXIT_FAILURE; currentProcess->priority += offset; return EXIT_SUCCESS; } void updateRSP(uint64_t newRsp) { if (currentProcess == NULL) return; currentProcess->rsp = newRsp; } int getPid() { if (currentProcess == NULL) return EXIT_FAILURE; return currentProcess->pid; } char quitCPU() { int pid = getPid(); if (pid == EXIT_FAILURE) return EXIT_FAILURE; // return block(pid); forceTimer(); return EXIT_SUCCESS; } char addSpaces(char * str, char qty) { char aux = qty; while (qty-- > 0) { *str++ = ' '; } return aux; } char getProcessData(char * out, processCDT * proc) { if (proc == NULL) return EXIT_FAILURE; char written = 0; char flag = 0; for (int j = 0; j < MAX_ATTR_SIZE; j++) { if (proc->name[j] != 0) flag = 1; if (flag){ out += addSpaces(out, 1); } else *out++ = proc->name[j]; } written += MAX_ATTR_SIZE; out += addSpaces(out, 2); written += 2; char buffer[10]; written += strcpy(out, itoa(proc->pid, buffer, 10, 10)); out += addSpaces(out, 2); buffer[0] = 0; written += strcpy(out, itoa(proc->priority, buffer, 10, 2)); out += addSpaces(out, 2); buffer[0] = 0; written += strcpy(out, itoa(proc->rsp, buffer, 16, 10)); out += addSpaces(out, 2); buffer[0] = 0; written += strcpy(out, itoa(proc->rbp, buffer, 16, 10)); out += addSpaces(out, 2); buffer[0] = 0; written += strcpy(out, (proc->foreground == 1) ? "F" : "B"); // out += addSpaces(out, 2); return written; } char * processes(){ char * ans = pvPortMalloc(pids * PROCESS_DATA_MAX_SIZE); int lastPid = getPid(); if (lastPid == EXIT_FAILURE) return NULL; processCDT * aux = firstReady; while (aux != NULL){ char writtenChars = getProcessData(ans, aux); if (writtenChars == EXIT_FAILURE) return NULL; ans += writtenChars; *ans++ = '\n'; if (aux == lastBlocked) aux = NULL; else if (aux == lastReady) aux = firstBlocked; else aux = aux->next; } *ans = 0; return ans; } /* ● Crear un proceso. DEBERÁ soportar el pasaje de parámetros. LISTO ● Obtener el ID del proceso que llama. LISTO ● Listar todos los procesos: nombre, ID, prioridad, stack y base pointer, foreground y cualquier otra variable que consideren necesaria. ● Matar un proceso arbitrario. LISTO ● Modificar la prioridad de un proceso arbitrario. LISTO ● Bloquear y desbloquear un proceso arbitrario. LISTO ● Renunciar al CPU. LISTO */