bottleros/Kernel/utils/memManagerFRT2.c

336 lines
11 KiB
C

// #ifndef BUDDY
// #include <stdlib.h>
// #include <stdint.h>
// #include <assert.h>
// #include <string.h>
// #include <naiveConsole.h>
// #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
// #define portCHAR char
// #define portFLOAT float
// #define portDOUBLE double
// #define portLONG long
// #define portSHORT short
// #define portSTACK_TYPE uint32_t
// #define portBASE_TYPE long
// typedef portSTACK_TYPE StackType_t;
// typedef long BaseType_t;
// typedef unsigned long UBaseType_t;
// #define configSUPPORT_STATIC_ALLOCATION 1
// #define configSUPPORT_DYNAMIC_ALLOCATION 1
// #define configTOTAL_HEAP_SIZE 1024
// #define configAPPLICATION_ALLOCATED_HEAP 0
// #define portBYTE_ALIGNMENT 8
// #define portBYTE_ALIGNMENT_MASK ( 0x0007 ) // 8
// #define pdFALSE ( ( BaseType_t ) 0 )
// #define pdTRUE ( ( BaseType_t ) 1 )
// #define portPOINTER_SIZE_TYPE uint32_t
// /* A few bytes might be lost to byte aligning the heap start address. */
// #define configADJUSTED_HEAP_SIZE ( configTOTAL_HEAP_SIZE - portBYTE_ALIGNMENT )
// /*
// * Initialises the heap structures before their first use.
// */
// static void prvHeapInit(void);
// /* Allocate the memory for the heap. */
// // #if( configAPPLICATION_ALLOCATED_HEAP == 1 )
// // /* The application writer has already defined the array used for the RTOS
// // heap - probably so it can be placed in a special segment or address. */
// // extern uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
// // #else
// // static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
// // #endif /* configAPPLICATION_ALLOCATED_HEAP */
// static uint8_t *ucHeap;
// void initMemoryManager(void * managedMemory) {
// ucHeap = managedMemory;
// }
// /* Define the linked list structure. This is used to link free blocks in order
// of their size. */
// typedef struct A_BLOCK_LINK
// {
// struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
// size_t xBlockSize; /*<< The size of the free block. */
// } BlockLink_t;
// static const uint16_t heapSTRUCT_SIZE = ( ( sizeof ( BlockLink_t ) + ( portBYTE_ALIGNMENT - 1 ) ) & ~portBYTE_ALIGNMENT_MASK );
// #define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( heapSTRUCT_SIZE * 2 ) )
// /* Create a couple of list links to mark the start and end of the list. */
// static BlockLink_t xStart, xEnd;
// /* Keeps track of the number of free bytes remaining, but says nothing about
// fragmentation. */
// static size_t xFreeBytesRemaining = configADJUSTED_HEAP_SIZE;
// /* STATIC FUNCTIONS ARE DEFINED AS MACROS TO MINIMIZE THE FUNCTION CALL DEPTH. */
// /*
// * Insert a block into the list of free blocks - which is ordered by size of
// * the block. Small blocks at the start of the list and large blocks at the end
// * of the list.
// */
/*
// #define prvInsertBlockIntoFreeList( pxBlockToInsert ) \
// { \
// BlockLink_t *pxIterator; \
// size_t xBlockSize; \
// \
// xBlockSize = pxBlockToInsert->xBlockSize; \
// \
// for( pxIterator = &xStart; pxIterator->pxNextFreeBlock->xBlockSize < xBlockSize; pxIterator = pxIterator->pxNextFreeBlock ) \
// { \
// } \
// \
// pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock; \
// pxIterator->pxNextFreeBlock = pxBlockToInsert; \
// }
*/
// /*-----------------------------------------------------------*/
// void *pvPortMalloc( size_t xWantedSize )
// {
// BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
// static BaseType_t xHeapHasBeenInitialised = pdFALSE;
// void *pvReturn = NULL;
// // vTaskSuspendAll();
// {
// /* If this is the first call to malloc then the heap will require
// initialisation to setup the list of free blocks. */
// if( xHeapHasBeenInitialised == pdFALSE )
// {
// prvHeapInit();
// xHeapHasBeenInitialised = pdTRUE;
// }
// /* The wanted size is increased so it can contain a BlockLink_t
// structure in addition to the requested amount of bytes. */
// if( xWantedSize > 0 )
// {
// xWantedSize += heapSTRUCT_SIZE;
// /* Ensure that blocks are always aligned to the required number of bytes. */
// if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0 )
// {
// /* Byte alignment required. */
// xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
// }
// }
// ncPrint("MALLOC: ");
// ncPrintDec(xFreeBytesRemaining);
// ncPrint(" ");
// ncPrintDec(xWantedSize);
// ncPrint(" ");
// ncPrintDec(configADJUSTED_HEAP_SIZE);
// ncPrint(" ---- ");
// if( ( xWantedSize > 0 ) && ( xWantedSize < configADJUSTED_HEAP_SIZE ) )
// {
// /* Blocks are stored in byte order - traverse the list from the start
// (smallest) block until one of adequate size is found. */
// pxPreviousBlock = &xStart;
// pxBlock = xStart.pxNextFreeBlock;
// while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
// {
// pxPreviousBlock = pxBlock;
// ncPrintDec(pxBlock->xBlockSize);
// ncPrint(" - ");
// pxBlock = pxBlock->pxNextFreeBlock;
// }
// /* If we found the end marker then a block of adequate size was not found. */
// if( pxBlock != &xEnd )
// {
// /* Return the memory space - jumping over the BlockLink_t structure
// at its start. */
// pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + heapSTRUCT_SIZE );
// /* This block is being returned for use so must be taken out of the
// list of free blocks. */
// pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
// /* If the block is larger than required it can be split into two. */
// if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
// {
// /* This block is to be split into two. Create a new block
// following the number of bytes requested. The void cast is
// used to prevent byte alignment warnings from the compiler. */
// pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
// /* Calculate the sizes of two blocks split from the single
// block. */
// pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
// pxBlock->xBlockSize = xWantedSize;
// /* Insert the new block into the list of free blocks. */
// prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
// }
// }
// // tengo 16 de info y de alineamiento 8!
// ncPrint("Dentro: ");
// ncPrintDec(xFreeBytesRemaining);
// ncPrint(" y ");
// xFreeBytesRemaining -= pxBlock->xBlockSize;
// ncPrintDec(xFreeBytesRemaining);
// ncNewline();
// }
// // traceMALLOC( pvReturn, xWantedSize );
// }
// // ( void ) xTaskResumeAll();
// // #if( configUSE_MALLOC_FAILED_HOOK == 1 )
// // {
// // if( pvReturn == NULL )
// // {
// // extern void vApplicationMallocFailedHook( void );
// // vApplicationMallocFailedHook();
// // }
// // }
// // #endif
// return pvReturn;
// }
// /*-----------------------------------------------------------*/
// void vPortFree( void *pv )
// {
// uint8_t *puc = ( uint8_t * ) pv;
// BlockLink_t *pxLink;
// if( pv != NULL )
// {
// /* The memory being freed will have an BlockLink_t structure immediately
// before it. */
// puc -= heapSTRUCT_SIZE;
// /* This unexpected casting is to keep some compilers from issuing
// byte alignment warnings. */
// pxLink = ( void * ) puc;
// // vTaskSuspendAll();
// {
// /* Add this block to the list of free blocks. */
// prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
// xFreeBytesRemaining += pxLink->xBlockSize;
// // traceFREE( pv, pxLink->xBlockSize );
// }
// // ( void ) xTaskResumeAll();
// }
// }
// /*-----------------------------------------------------------*/
// size_t xPortGetFreeHeapSize( void )
// {
// return xFreeBytesRemaining;
// }
// /*-----------------------------------------------------------*/
// void vPortInitialiseBlocks( void )
// {
// /* This just exists to keep the linker quiet. */
// }
// /*-----------------------------------------------------------*/
// static void prvHeapInit( void )
// {
// BlockLink_t *pxFirstFreeBlock;
// uint8_t *pucAlignedHeap;
// /* Ensure the heap starts on a correctly aligned boundary. */
// pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
// /* xStart is used to hold a pointer to the first item in the list of free
// blocks. The void cast is used to prevent compiler warnings. */
// xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
// xStart.xBlockSize = ( size_t ) 0;
// /* xEnd is used to mark the end of the list of free blocks. */
// xEnd.xBlockSize = configADJUSTED_HEAP_SIZE;
// xEnd.pxNextFreeBlock = NULL;
// /* To start with there is a single free block that is sized to take up the
// entire heap space. */
// pxFirstFreeBlock = ( void * ) pucAlignedHeap;
// pxFirstFreeBlock->xBlockSize = configADJUSTED_HEAP_SIZE;
// pxFirstFreeBlock->pxNextFreeBlock = &xEnd;
// }
// /*-----------------------------------------------------------*/
// // #endif /* #ifdef configHEAP_ALLOCATION_SCHEME */
// // #endif /* #if(configHEAP_ALLOCATION_SCHEME == HEAP_ALLOCATION_TYPE1) */
// // char testOne() {
// // void * alloc1 = pvPortMalloc(100);
// // void * alloc2 = pvPortMalloc(200);
// // void * alloc3 = pvPortMalloc(300);
// // memset(alloc1, 1, 100);
// // memset(alloc2, 2, 200);
// // memset(alloc3, 3, 300);
// // for (int i = 0; i < 600; i++) {
// // if (i < 100) {
// // assert(*((char *) alloc1+i) == 1);
// // } else if (i < 300) {
// // assert(*((char *) alloc2+i-100) == 2);
// // } else if (i < 600) {
// // assert(*((char *) alloc3+i-300) == 3);
// // }
// // }
// // return EXIT_SUCCESS;
// // }
// // static unsigned long int next = 1;
// // int rand(void) // RAND_MAX assumed to be 32767
// // {
// // next = next * 1103515245 + 12345;
// // return (unsigned int)(next/65536) % 32768;
// // }
// /*
// char testTwo() {
// void * ptr;
// while (ptr != NULL){
// ptr = memMalloc((rand() % 2000) + 1);
// if (!((char *) memoryManager->nextAddress >= memoryManager->initialAddress)) {
// printStringLen(13, "allocRand1 -- ERROR", 31);
// new_line();
// return EXIT_FAILURE;
// }
// if (!((char *) memoryManager->nextAddress <= memoryManager->initialAddress + MANAGED_MEMORY_SIZE)) {
// printStringLen(13, "allocRand2 -- ERROR", 31);
// new_line();
// return EXIT_FAILURE;
// }
// // if (!((char *) memoryManager->lastAddress >= memoryManager->initialAddress)) {
// // }
// // if (!((char *) memoryManager->lastAddress <= memoryManager->initialAddress + MANAGED_MEMORY_SIZE)) {
// // }
// }
// return EXIT_SUCCESS;
// }
// */
// // char mem[1024];
// // int main() {
// // // initMemoryManager(mem);
// // if (testOne() == EXIT_FAILURE)
// // return EXIT_FAILURE;
// // // if (testTwo() == EXIT_FAILURE)
// // // return EXIT_FAILURE;
// // }
// #endif