bottleros/Kernel/utils/scheduler.c

414 lines
10 KiB
C

#include "scheduler.h"
#define INIT_PID 1
void _initialize_stack_frame(void *, void *, int, char**);
enum states {READY = 0, BLOCKED};
typedef struct processCDT {
struct processCDT * next;
char * name;
int pid;
int ppid;
uint64_t rsp;
uint64_t rbp;
char priority;
char executions;
char foreground;
enum states state;
} processCDT;
processCDT * firstReady = NULL;
processCDT * lastReady = NULL;
processCDT * firstBlocked = NULL;
processCDT * lastBlocked = NULL;
int readyLen = 0;
int blockedLen = 0;
static processCDT * currentProcess = NULL;
static int pids = INIT_PID;
static char update = 1;
#include "naiveConsole.h"
#include "time.h"
uint64_t nextProcess() {
update = 1;
if (currentProcess == NULL) {
// ncClear();
// ncPrint("Una cubana para el socio biza");
// ncPrint(firstReady->name);
// // ncPrintDec(firstReady->pid);
// ncPrintHex(firstReady->rsp);
// ncPrintHex(firstReady->rbp);
// wait(4);
if (firstReady == NULL)
unblock(INIT_PID);
currentProcess = firstReady;
return firstReady->rsp;
}
if (currentProcess->executions < MAX_PRIORITY - currentProcess->priority + 1) {
currentProcess->executions++;
// ncClear();
// ncPrint("Hola");
// ncPrintDec(firstReady->pid);
// wait(4);
return currentProcess->rsp;
}
// ncPrint("Chau");
currentProcess->executions = 0;
if (currentProcess->next != NULL)
currentProcess = currentProcess->next;
else {
// ncPrint("Una colombiana para el socio biza");
// wait(4);
currentProcess = firstReady;
}
return currentProcess->rsp;
}
void idle() {
while (1) {
haltcpu();
}
}
void initScheduler() {
char * argv[] = {"Dummy"};
enqueueProcess(idle, 0, 1, argv);
}
// void setFn(void (*fn) (int, char **), int argc, char *argv[]) {
// currentProcess->rsp = (currentProcess->rbp) - 20;
// _initialize_stack_frame(fn, currentProcess->rbp, argc, argv);
// }
void enqueueProcess(void (*fn) (int, char **), char foreground, int argc, char *argv[]) {
if (firstReady != NULL && firstReady->pid == INIT_PID)
block(INIT_PID);
processADT process = pvPortMalloc(sizeof(processCDT));
uint64_t * auxi = pvPortMalloc(STACK_SIZE);
uint64_t * rbp = STACK_SIZE + auxi;
uint64_t * rsp = rbp - 20; //22
char priority = (foreground == 1) ? DEF_PRIORITY : MAX_PRIORITY/2;
// newProcess(process, argv[0], priority, foreground, (uint64_t) rsp, (uint64_t) rbp);
// char aux[MAX_NAME_SIZE];
char * aux = pvPortMalloc(10);
int j;
for (j = 0; j < MAX_NAME_SIZE - 1 && argv[0][j] != 0; j++) {
aux[j] = argv[0][j];
}
aux[j] = '\0';
process->name = aux;
process->pid = pids++;
process->ppid = currentProcess->pid;
process->priority = priority;
process->rsp = (uint64_t) rsp;
process->rbp = (uint64_t) rbp;
process->executions = 0;
process->foreground = foreground;
process->state = READY;
_initialize_stack_frame(fn, rbp, argc, argv);
if (firstReady == NULL)
firstReady = process;
else
lastReady->next = process;
lastReady = process;
// ncClear();
// ncPrint(argv[0]);
// // proc->name = argv[0];
// ncPrint(process->name);
// ncPrintDec(process->pid);
// ncPrintHex(process->rsp);
// ncPrintHex(process->rbp);
// wait(3);
return;
}
void newProcess(processADT process, char * name, char priority, char foreground, uint64_t rsp, uint64_t rbp) {
// char aux[MAX_NAME_SIZE];
// int j;
// for (j = 0; j < MAX_NAME_SIZE - 1 && name[j] != 0; j++) {
// aux[j] = name[j];
// }
// aux[j] = '\0';
// process->name = aux;
// process->pid = pids++;
// process->ppid = currentProcess->pid;
// process->priority = priority;
// process->rsp = rsp;
// process->rbp = rbp;
// process->executions = 0;
// process->foreground = foreground;
// process->state = READY;
}
// void loader(int argc, char * argv[], void (*fn) (int, char **)) {
// fn(argc, argv);
// exit();
// }
processADT search(processADT * previous, int pid, processADT first) {
processADT curr = first;
* previous = NULL;
while (curr != NULL) {
if (curr->pid == pid) {
break;
}
* previous = curr;
curr = curr->next;
}
if (curr == NULL) {
* previous = NULL;
return NULL;
}
if (curr == first) {
* previous = NULL;
return curr;
}
return curr;
}
char block(int pid) {
processADT prev = NULL;
processADT del = search(&prev, pid, firstReady);
if (del == NULL)
return EXIT_FAILURE;
else {
if (prev != NULL)
prev->next = del->next;
else
firstReady = del->next;
}
processCDT * next = del->next;
del->next = NULL;
if (lastBlocked != NULL)
lastBlocked->next = del;
else
firstBlocked = del;
lastBlocked = del;
if (pid == currentProcess->pid) {
update = 0;
currentProcess = next;
forceTimer();
}
return EXIT_SUCCESS;
}
char unblock(int pid) {
processADT prev = NULL;
processADT del = search(&prev, pid, firstBlocked);
if (del == NULL)
return EXIT_FAILURE;
else {
if (prev != NULL)
prev->next = del->next;
else
firstBlocked = del->next;
del->next = NULL;
if (lastReady != NULL)
lastReady->next = del;
else
firstReady = del;
lastReady = del;
}
return EXIT_SUCCESS;
}
char kill(int pid) {
processADT prev = NULL;
processADT del = search(&prev, pid, firstReady);
if (del == NULL) {
del = search(&prev, pid, firstBlocked);
if (del == NULL)
return EXIT_FAILURE;
else {
if (prev != NULL)
prev->next = del->next;
else
firstBlocked = del->next;
}
}
else {
if (prev != NULL)
prev->next = del->next;
else
firstReady = del->next;
}
processCDT * next = del->next;
vPortFree((void *) del->rbp - STACK_SIZE);
vPortFree((void *) del);
if (pid == currentProcess->pid) {
update = 0;
currentProcess = next;
forceTimer();
}
return EXIT_SUCCESS;
}
void exitProcess() {
kill(currentProcess->pid);
}
char nice(char offset) {
if (currentProcess == NULL)
return EXIT_FAILURE;
currentProcess->priority += offset;
return EXIT_SUCCESS;
}
void updateRSP(uint64_t newRsp) {
if (currentProcess == NULL) {
// ncClear();
// ncPrint("ES NULL");
// wait(4);
return;
}
if (update)
currentProcess->rsp = newRsp;
}
int getPid() {
if (currentProcess == NULL)
return EXIT_FAILURE;
return currentProcess->pid;
}
char quitCPU() {
int pid = getPid();
if (pid == EXIT_FAILURE)
return EXIT_FAILURE;
// return block(pid);
forceTimer();
return EXIT_SUCCESS;
}
char addSpaces(char * str, char qty) {
char aux = qty;
while (qty-- > 0) {
*str++ = ' ';
}
return aux;
}
char getProcessData(char * out, processCDT * proc) {
if (proc == NULL)
return EXIT_FAILURE;
char written = 0;
char flag = 0;
for (int j = 0; j < MAX_NAME_SIZE; j++) {
if (!flag && proc->name[j] == 0)
flag = 1;
else if (flag)
out += addSpaces(out, 1);
else
*out++ = proc->name[j];
}
written += MAX_NAME_SIZE;
out += addSpaces(out, 2);
written += 2;
char buffer[10];
char copied = strcpy(out, itoa(proc->pid, buffer, 10, 10));
out += copied;
out += addSpaces(out, MAX_ATTR_SIZE - copied);
written += MAX_ATTR_SIZE - copied;
out += addSpaces(out, 2);
written += copied + 2;
// buffer = itoa(proc->priority, buffer, 10, 2);
copied = strcpy(out, itoa(proc->priority, buffer, 10, 2));
out += copied;
out += addSpaces(out, MAX_ATTR_SIZE - copied);
written += MAX_ATTR_SIZE - copied;
out += addSpaces(out, 2);
written += copied + 2;
copied = strcpy(out, itoa(proc->rsp, buffer, 16, 10));
out += copied;
out += addSpaces(out, MAX_NAME_SIZE - copied);
written += MAX_NAME_SIZE - copied;
out += addSpaces(out, 2);
written += copied + 2;
copied = strcpy(out, itoa(proc->rbp, buffer, 16, 10));
out += copied;
out += addSpaces(out, MAX_NAME_SIZE - copied);
written += MAX_NAME_SIZE - copied;
out += addSpaces(out, 2);
written += copied + 2;
copied = strcpy(out, (proc->foreground == 1) ? "F" : "B");
out += copied;
out += addSpaces(out, MAX_ATTR_SIZE - copied);
written += MAX_ATTR_SIZE - copied;
out += addSpaces(out, 2);
written += copied + 2;
// out += addSpaces(out, 2);
// *out++;
// *out = '\0';
return written;
}
char * processes(){
char * ans = pvPortMalloc(pids * PROCESS_DATA_MAX_SIZE);
char * ret = ans;
char * info = "name pid prio rsp rbp fore\n";
strcpy(ans, info);
ans += 56;
processCDT * aux = firstReady;
while (aux != NULL) {
char writtenChars = getProcessData(ans, aux);
if (writtenChars == EXIT_FAILURE)
return NULL;
ans += writtenChars;
*ans++ = '\n';
if (aux == lastBlocked)
aux = NULL;
else if (aux == lastReady)
aux = firstBlocked;
else
aux = aux->next;
}
*ans = 0;
return ret;
}
/*
● Crear un proceso. DEBERÁ soportar el pasaje de parámetros. LISTO
● Obtener el ID del proceso que llama. LISTO
● Listar todos los procesos: nombre, ID, prioridad, stack y base pointer, foreground y
cualquier otra variable que consideren necesaria.
● Matar un proceso arbitrario. LISTO
● Modificar la prioridad de un proceso arbitrario. LISTO
● Bloquear y desbloquear un proceso arbitrario. LISTO
● Renunciar al CPU. LISTO
*/