ADP Home Assignment 3 - Resilience patterns 14/03/2024

Autonomous fruit harvesting system

using drone technology

Professor:

¢ Maxim Glaida

Group members:
e Lucas Catolino
e Santiago Lo Coco

o Joel Kudiyirickal

March 2024

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 1



ADP Home Assignment 3 - Resilience patterns

Index

Overview
Resilience patterns used
Circuit Breaker Pattern
Retry Pattern
Timeout Pattern
Rate Limiting Pattern
Application Idea and Problem Statement
Source Code and Implementation of Resilience Design Patterns
1. Retry Pattern
2. Timeout Pattern
3. Rate Limiting Pattern
4. Circuit Breaker Pattern
Design Decisions and Insights
Changes from the base code from the first delivery
Class diagram
GitHub repository

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal

14/03/2024

© © 0N O O O & A WWWWWWOW



ADP Home Assignment 3 - Resilience patterns 14/03/2024

Overview

In this project, we were asked to use complementary resilience patterns. We decided to work
on the previous 'Library' project presented in the 'Implementing Design Patterns' assignment.
The idea of reutilizing the previous project was to focus on the resilience patterns more than
the design of the project itself. Additionally, it was a good opportunity to develop a project as
it would be in real-life system development: after launching a version of the system, more
features are requested, and as the system grows, it should also be improved.

Resilience patterns used

Circuit Breaker Pattern

The Circuit Breaker pattern helps handle failures gracefully by temporarily blocking requests
to a service when it's deemed unavailable or experiencing a high failure rate, thereby
preventing cascading failures and conserving resources.

Retry Pattern

The Retry pattern allows the system to automatically retry failed operations with the
expectation that they might succeed on subsequent attempts.

Timeout Pattern

The Timeout pattern sets a maximum time for an operation to complete before it's considered
unsuccessful, helping prevent long-running operations from causing delays or blocking
resources indefinitely.

Rate Limiting Pattern

The Rate Limiting pattern restricts the number of requests a system can handle within a
specified time frame to prevent overload and ensure fair resource allocation.

Application Idea and Problem Statement

The library system aims to provide a flexible and reliable platform for managing books and
magazines within a library setting. The primary goal is to offer users a seamless experience
for browsing, accessing, and managing library items while ensuring system stability and
resilience against potential failures or disruptions.

The challenges addressed by the library system include:

1. Reliable Access: Users should be able to access library items without encountering
system failures or downtime.

2. Performance: The system should maintain optimal performance even under varying
loads and conditions.

3. Fault Tolerance: The system should gracefully handle errors and failures to prevent
disruptions in service.

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 3



ADP Home Assignment 3 - Resilience patterns 14/03/2024

Source Code and Implementation of Resilience Design Patterns

The following resilience design patterns have been implemented in the library system:

1. Retry Pattern

Implemented to automatically retry failed operations, allowing for potential success on
subsequent attempts. The retry logic is integrated into critical operations such as accessing
external resources or performing network requests.

Source: The retry logic is embedded within methods that interact with external services or
perform potentially unreliable operations.

We decided to demonstrate its functionality in methods responsible for adding library items
as seen in Figure 1. When a library item is added, if the insertion fails, it will retry a certain
number of times until it eventually throws an exception. The idea behind this is to simulate a
real-life situation where a client tries to insert a book, but the library is full. The system will
retry the insertion, and perhaps another client removes an item, creating a free spot where
the book can now be inserted. This scenario is depicted in Figure 2.

void performWithRetry(ExceptionRunnable action)
int attempt = @;
e (attempt < retryAttempts
System.out.println(”Attempt: " + attempt);

I

i A
action.run{);
or s
catch (Exception e) {
attempt++;
if (attempt »= retryAttempts
system.out.println("Attempts error");

throw e;

Figure 1: Retry pattern

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 4



ADP Home Assignment 3 - Resilience patterns 14/03/2024

Librarian 1 System Librarian 2 System Librarian 3 System
Retry 0
Add book Add book Add book
e
Book added Book added Library is full
Retry 1
Delete book Add back
Book deleted Book added

Figure 2: Retry real-life situation

2. Timeout Pattern

Applied to set a maximum time for operations to complete before considering them
unsuccessful. This prevents long-running operations from causing delays or blocking
resources indefinitely.

Source: Timeout mechanisms are integrated into methods that perform potentially
time-consuming tasks.

We decided to demonstrate its functionality in methods responsible for removing library items
as seen in Figure 2. When a library item is removed, a random time is calculated, and the
thread will sleep for that duration. If the thread sleeps for longer than expected, a timeout
exception is thrown. The idea behind this is to simulate a real-life situation where the server
is slow for any reason but still capable of resolving the request, such as when using an SQL
database and removing an item involves a lot of table manipulations due to constraints like
"on delete cascade".

void performWithTimeout(Runnable action, long timeoutMillis)
Thr thread = new Thread(action);
thread.start();
System.out.println("Thread state: " + thread.getState());
thread.join(timeoutMilli

System.out.println(“Thread state: " + thread.getState());
if (thread.isAlive()

thread. interrupt();

throw new TimeoutException({"Op on timed out");

Figure 2: Timeout pattern

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 5



ADP Home Assignment 3 - Resilience patterns 14/03/2024

3. Rate Limiting Pattern

Implemented to restrict the number of requests the system can handle within a specified time
frame. This prevents overload and ensures fair resource allocation, enhancing system
stability and performance.

Source: Rate limiting logic is incorporated into methods that interact with external services or
handle incoming requests.

We have integrated the rate limiter pattern using a leaky bucket mechanism as seen in
Figure 3. This pattern is particularly useful for methods responsible for displaying library
items. In a real-life scenario, these methods often need to aggregate items based on external
services such as APIs. This helps maintain system stability and performance even during
periods of high demand.

void displaylLibraryItems() {
long currentTime = System.currentTimeMillis();
long timeElapsed = currentTime - lastAccessTime;

tokens 4= (int timeElapsed / interval) * ratelimit;
System.out.println("Tokens: " + tokens);
System.out.println(”Time elapsed: " + timeElapsed);
tokens = Math.min(tokens, rateLimit);

tokens > 8

System.out.println("Ite ailable in the library:");
libraryItems.forEach{System.out: :println);

tokens--;

lastAccessTime = currentTime;

else

System.out.println{”Rate limit exceeded. Please try again later.”);

Figure 3: Rate Limiter pattern

4. Circuit Breaker Pattern

Employed to handle failures gracefully by temporarily blocking requests to a service
experiencing high failure rates or unavailability. This helps prevent cascading failures and
conserves resources during degraded states.

Source: Circuit breaker mechanisms are integrated into critical operations to monitor service
availability and failure rates.

We decided to demonstrate its functionality by incorporating a random possibility where the
circuit is closed as seen in Figure 4. When adding or removing items from the library, it

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 6



ADP Home Assignment 3 - Resilience patterns 14/03/2024

checks whether the circuit is open or not. The rationale behind this is to simulate a real-life
scenario where the circuit might close due to errors or other issues.

poolean islLibraryOpen() {

double rand = Math.random

if (rand > libraryOpenCondition
System.out.println(”Library open”

return -

system.out.println{“Library closed"

return -

Figure 4: Circuit Breaker pattern

Design Decisions and Insights

The integration of resilience design patterns in the library system was a deliberate choice
aimed at enhancing system reliability and fault tolerance. Through this exercise, several
insights were gained:

1. Modular Design: Designing the system with modularity in mind allowed for easier
integration of resilience patterns without tightly coupling components.

2. Failure Handling: Resilience patterns provided robust mechanisms for handling
failures and mitigating potential disruptions, improving overall system stability.

3. Performance Impact: While resilience patterns add overhead in terms of complexity
and processing, their benefits in terms of system reliability and fault tolerance
outweigh the performance costs.

4. Configuration Flexibility: The ability to configure parameters such as retry attempts,
timeouts, rate limits, and circuit breaker thresholds from external sources (e.g.,
configuration files or environment variables) adds flexibility to adapt to varying
operational requirements.

We decided to implement the patterns ourselves instead of relying on an external library like
resilience4j. We believed it was beneficial to familiarize ourselves with the functionality of the
patterns and learn how to use them firsthand. When developers utilize frameworks or
external libraries, they often abstract away many technical details, delegating them to a third
party. While this approach is not inherently flawed and is encouraged in industry to utilize
proven solutions and avoid reinventing the wheel, in an educational setting, relying on
third-party libraries or frameworks can abstract away significant learning opportunities. That
is why we chose to implement the patterns from scratch.

In conclusion, the integration of resilience design patterns in the library system not only
improves its robustness and reliability but also provides valuable insights into building
resilient software systems in real-world applications. These patterns serve as essential tools
for ensuring system stability and fault tolerance in dynamic and challenging environments.

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 7



ADP

Home Assignment 3 - Resilience patterns 14/03/2024

Changes from the base code from the first delivery

Several enhancements and refinements have been made to the base code of the library
system to improve its functionality, maintainability, and test coverage. Here are the key
changes:

1.

Creation of Java Packages: The codebase has been organized into separate Java
packages to enhance maintainability and code organization. Packages such as
decorators, interfaces, exceptions, and items have been created to logically group
related classes and components.

Method and Class Refactoring: Existing methods and classes have been refactored
for clarity, readability, and improved functionality. Code duplication has been reduced,
and more descriptive methods and variable names have been used to enhance code
comprehensibility.

Implementation of Builders for Library Items: Builders have been implemented for
creating instances of library items such as books and magazines. The builder pattern
allows for the construction of complex objects step by step, providing a more flexible
and readable way to create library items with various attributes.

Addition of More Methods: Additional methods have been added to enhance the
functionality of the library system. These methods include operations for adding,
removing, and updating library items, as well as retrieving information about the
library's contents and capacity.

Expansion of Test Coverage: The test suite has been expanded to achieve over 90%
test coverage, ensuring thorough validation of the system's functionality and behavior.
Unit tests and pseudo-integration tests have been added to cover critical components
and scenarios.

These changes contribute to the overall improvement and refinement of the library system,
making it more robust, maintainable, and reliable. The adoption of best practices in software
development, such as code organization, refactoring, and comprehensive testing, ensures
the delivery of a high-quality and resilient application.

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 8



ADP Home Assignment 3 - Resilience patterns 14/03/2024

Class diagram

Libraryltem
defaultToString() String

Tm..vv.mm

Library

String
ltemType

String

Library
Library()

Magazine Book
erformWithTimeout(Runnable - =
2 R Magazine(String, String) Book(String, String)
displayLibraryltems() ~ S
X String String
removelibraryltem(Libraryltem) - - -
. : toString() String toString() String
iterator() Iterator<Libraryltem>
String String
customTypelterator(ltemType) Iterator<Libraryltem>
. ) ItemType ltemType
performWithRetry(ExceptionRunnable)
) ) String String
addLibraryltem(Libraryltem)

Library

1
Jibrary — library

& Builder

Builder() Builder Builder

Builder() Builder()
LibraryDecorator String String

1‘ build() Library

LibraryDecorator(Library) String String
extendedFunctionality() build() Magazine build() Book
String String
String String

DecreaseBooksCapacityDecorator IncreaseBooksCapacityDecorator
DecreaseBooksCapacityDecorator(Library, ) IncreaseBooksCapacityDecorator(Library )

extendedFunctionality() extendedFunctionality()

ltemType LibraryClosedException LibraryFullException ExceptionRunnable
ItemType() LibraryClosedException(String) LibraryFullException(String) run()
values () ltemType[]
valueOf ( String) ltemType

Figure 5: Class diagram

GitHub repository

https://github.com/slococo/adp-hw1l

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal 9


https://github.com/slococo/adp-hw1

