
ADP Home Assignment 1 - Implementing Design Patterns 27/02/2024

Library System

Idea
The application idea is a library management system that allows users to build a library of
books and magazines (although it can be extended to allow more types of items) and provides
extended functionality through decorators.

The application addresses the need for a flexible and extensible library system. The use of
design patterns like Singleton, Builder, and Decorator enhances the modularity and
extensibility of the code, allowing for easy addition of new features without modifying
existing classes. The decorator pattern specifically allows for dynamic extension of the
library's functionality. Furthermore, the Iterator pattern enables users to iterate through
various types of items that the library contains, such as books and magazines.

Previous discussion

The idea for the library project stemmed from a previous assignment where we explored
various design patterns. Initially, we considered reusing the code and design patterns from
that project. However, upon rereading the exercise, we realized that the context and
requirements were different, making code reuse not a good idea.

Despite this setback, we believed in the concept of the library project and its potential. Thus,
we decided to think again which design patterns would be most suitable for the new
requirements. After consulting "The Gang of Four" file from Moodle, we identified
Singleton, Builder, and Decorator as complementary design patterns that could effectively
address our needs.

We then asked ChatGPT to generate code based on these instructions. However, we
encountered an issue when ChatGPT started iterating over an array instead of using the
Iterator pattern. Recognizing that this approach was not optimal for our codebase, we decided
to rectify it. Therefore, we used ChatGPT as a tool for rapidly developing a proof of concept
(PoC), enabling us to dedicate all our time to refining design patterns.

Features
1. Flexibility and extensibility: Design patterns (Singleton, Builder, and Decorator)

contribute to code flexibility and extensibility, enabling the addition of features
without modifying existing structures.

2. Readability and maintainability: Patterns improve code readability and
maintainability. Each pattern serves a specific purpose, enhancing the overall clarity
of the codebase and making it easier to modify.

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal
1



ADP Home Assignment 1 - Implementing Design Patterns 27/02/2024

3. Dynamic functionality enhancement: The Decorator pattern enables dynamic
functionality enhancement. It allows for the seamless addition of new behaviors to
existing classes, showcasing adaptability to changing requirements.

Complementary design patterns
● Singleton

Decision: Used the Singleton pattern for the Library class to ensure there is only one
instance of the library throughout the application.
Rationale: This design decision helps maintain a single point of access to the library,
preventing multiple instances and ensuring consistency in managing books.

● Builder
Decision: Implemented the Builder pattern for constructing the library using the
LibraryBuilder class.
Rationale: The Builder pattern provides a fluent interface for building complex
objects step by step. It enhances readability and allows for easy extension when
constructing the library with multiple books.

● Decorator
Decision: Applied the Decorator pattern to extend the functionality of the Library
class.
Rationale: Decorators allow dynamic augmentation of an object's behavior. In this
case, it allows us to add new features to the library without modifying its core
functionality. The Increase and DecreaseBooksCapacityDecorator demonstrate how to
increase or decrease the capacity of items in the library.

● Iterator
Decision: Introduce the Iterator pattern to facilitate traversal of the collection of items
in the Library class.
Rationale: The Iterator pattern provides a standardized way to traverse elements in a
collection without exposing its underlying representation. By incorporating the
Iterator pattern, the Library class can offer a consistent interface for iterating over its
collection of books and magazines.

Diagram and in-depth explanation
● The Book class represents a book in the library with its title and author.
● The Magazine class represents a book in the library with its title and publisher.
● The Library class implements the singleton pattern, ensuring that only one instance of

the library exists throughout the application. Additionally, it implements two iterators:
one for traversing the items of the library while respecting the item capacity, and
another for traversing each type of item in the library, hiding the implementation
details from the user.

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal
2



ADP Home Assignment 1 - Implementing Design Patterns 27/02/2024

● The LibraryItem interface has two methods to get the title and the owner (author in
the case of books and publisher in the case of magazines).

● The LibraryBuilder class provides a way to construct the library by adding books one
by one and for setting the items capacity.

● The LibraryDecorator class is an abstract class that extends the functionality of the
Library class.

● The IncreaseBooksCapacityDecorator and DecreaseBooksCapacityDecorator class
are concrete decorators that add extended functionality to the library.

● In the App class, books are created, added to the library using the builder pattern, and
displayed. Also, the extended functionality is demonstrated using the decorator
pattern. Finally, iterators are used to print the elements of the library.

Fig. 1. Class diagram.

Github repository

https://github.com/slococo/adp-hw1

Lucas Catolino, Santiago Lo Coco, Joel Kudiyirickal
3

https://github.com/slococo/adp-hw1

